[编辑]方法学验证【多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。
分析方法的方法学验证 篇一一、方法验证
1.准确度 该指标主要是通过回收率来反映。验证时一般要求分别配制浓度为80%、100%和120%的供试品溶液各三份,分别测定其含量,将实测值与理论值比较,计算回收率。 可接受的标准为:各浓度下的平均回收率均应在98.0%-102.0%之间,9个回收率数据的相对标准差(RSD)应不大于2.0%。
2.线性 线性一般通过线性回归方程的形式来表示。具体的验证方法为: 在80%至120%的浓度范围内配制6份浓度不同的供试液,分别测定其主峰的面积,计算相应的含量。以含量为横坐标(X),峰面积为纵坐标(Y),进行线性回归分析。 可接受的标准为:回归线的相关系数(R)不得小于0.998,Y轴截距应在100%响应值的2%以内,响应因子的相对标准差应不大于2.0%。
3.精密度 1)重复性 配制6份相同浓度的供试品溶液,由一个分析人员在尽可能相同的条件下进行测试,所得6份供试液含量的相对标准差应不大于2.0%。 2)中间精密度 配制6份相同浓度的供试品溶液,分别由两个分析人员使用不同的仪器与试剂进行测试,所得12个含量数据的相对标准差应不大于2.0%。
4.专属性 可接受的标准为:空白对照应无干扰,主成分与各有关物质应能完全分离,分离度不得小于2.0。以二极管阵列检测器进行纯度分析时,主峰的纯度因子应大于980。
5.检测限 主峰与噪音峰信号的强度比应不得小于3。
6.定量限 主峰与噪音峰信号的强度比应不得小于10。另外,配制6份最低定量限浓度的溶液,所测6份溶液主峰的保留时间的相对标准差应不大于2.0%。
7.耐用性 分别考察流动相比例变化±5%、流动相pH值变化±0.2、柱温变化±5℃、流速相对值变化±20%时,仪器色谱行为的变化,每个条件下各测试两次。可接受的标准为:主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离;各条件下的含量数据(n=6)的相对标准差应不大于2.0%。
8、系统适应性 配制6份相同浓度的供试品溶液进行分析,主峰峰面积的相对标准差应不大于2.0%,主峰保留时间的相对标准差应不大于1.0%。另外,主峰的拖尾因子不得大于2.0,主峰与杂质峰必须达到基线分离,主峰的理论塔板数应符合质量标准的规定。
二、分 析 方 法 验 证 (Validation)
进行验证,以证明分析方法符合检测的目的和要求,这就是分析方法验证。从本质上讲,方法验证就是根据检测项目的要求,预先设置一定的验证内容,并通过设计合理的试验来验证所采用的分析方法符合检测项目的要求。方法验证在质量控制上有重要的作用和意≮www.≯义,只有经过验证的分析方法才能用于药品生产的分析检测,方法验证是制订质量标准的基础。 方 法 验 证 内 容 包括方法的专属性、线性、范围、准确度、精密度、检出限、定量限、耐用性和系统适用性等,检测目的不同验证要求也不尽相同。 1. 专 属 性 (Speciality / Specificity)
专属性是指分析方法能够将产品和杂质分开的特性,也称为“选择性”。对于纯度检测,可在标准品中加入产品中的已知杂质,或者直接用粗品,考察产品峰是否受到杂质的干扰,对于过程跟踪,可用反应体系样品来考察有没有其它的杂质干扰。必要时使用二极管阵列检测器或者质谱检测器进行色谱峰纯度检查。一般要求产品和杂质之间的分离度大于2.0。 2. 线 性 (Linearity)
线性是在设定的范围内,检测结果与样品中原料或产品的浓度呈线性关系的程度。线性是定量检测的基础,需要定量检测的项目都需要验证线性。一般用贮备液经过精密稀释,或分别精密称样,制备得到一系列被测物质的浓度(5个以上),按浓度从小到大运行序列,以峰面积和浓度的函数作图,用最小二乘法进行线性回归计算,考察分析方法的线性。 3. 范 围 (Range)
范围指在能够达到一定的准确度、精密度和线性时,样品中被分析物的浓度区间。简单的说,范围就是分析方法适用的样品中待测物的浓度最大值和最小值。需要定量检测的分析方法都需要对范围进行验证,纯度检测时,范围应为测试浓度的80%~120%。 4. 准 确 度 (Accuracy)
准确度是指测定的结果与真实值之间接近的程度,所以也叫做“真实度”,需要定量得分析方法均需要验证准确度。准确度应在规定的范围内建立,对于原料药可用已知纯度的标准品或符合要求的原料药进行测定,必要时可与另一个已建立准确度的方法比较结果。 5. 精 密 度 (Precision)
精密度是指在规定条件下,同一均匀样品经多次取样进行一系列检测所得结果之间的接近程度。精密度一般用相对标准偏差(RSD)表示,取样检测次数应至少6次。 精密度可以从三个层次考察:重复性、中间精密度、重现性。
a、重复性(Repeatability):是在相同的操作条件下、较短时间间隔内,由同一分析人员测定所得结果的精密度。一般是用100%浓度水平的样品测定6次的结果进行评价。
b、中间精密度(Intermediate precision):同一实验室,在日期、分析人员、仪器等内部条件改变时,测定结果的精密度。 c、重现性(Reproducibility):指不同实验室之间不同分析人员测定结果的精密度。
6、检 出 限 (Limits of Detection;LOD)
检出限是指样品中的被分析物能够被检测到的最低量,不需要准确定量。检出限体现了分析方法的灵敏度。检出限的测定可以通过对一系列已知浓度被测物的试样进行检测,以能准确、可靠检出被测物的最小浓度来确定,也可把已知浓度样品的信号与噪声信号进行比较,以信噪比为3:1时的浓度确定检出限,一般要求能够达到进样浓度的0.05%。
7、定 量 限 (Limits of Quantitation / Quantification;LOQ) 定量限是指样品中的被分析物能够被定量检测的最低量,其测定结果需要一定的准确度和精密度,定量限体现了分析方法灵敏定量检测的能力。检测需要严格控制含量的杂质,必须考察方法的定量限,以保证杂质能够被准确定量。一般以信噪比为10:1时相应的浓度或进样量来确定定量限。
8、耐 用 性 (Durability / Robustness)
耐用性是指测定条件发生小的变动时,测定结果不受影响的承受程度,耐用性主要表明方法的抗干扰能力,主要的变动因素包括:流动相的组成、流速和pH值、色谱柱、柱温等。经试验,应说明小的变动能否符合系统适用性试验要求,以确保方法有效。 9. 系 统 适 用 ……此处隐藏7368个字……指同一个人在同一台仪器上重复进样所得结果的一致性。事实上,文献中二者常常混用,多数人不做严格区分。但大多数欧洲学者会严格区分二者的不同。我们认为对现代仪器来说,分析重复性是容易实现的,而重现性则是更重要的,也是方法验证所必须考察的。重现性和重复性都用多次分析所得结果的相对标准偏差(RSD)来表示。
方法的重现性应包括多次连续进样分析的重复性、不同时间(天与天之间)分析的重复性、不同型号仪器之间的重现性和不同实验室之间的重现性。作为方法开发人员,首先应测定重复性,即在相同条件下连续进样5—10次,统汁待测组分的保留时间和峰面积(或峰高)的RSD,一般要求保留时间的RSD不大于1%,峰面积的RSD不大于5%。文献报道的最佳重复性数据为保留时间的RSD小于0.1%,峰面积的RSD小于1%。
如果样品要经过预处理,还应测定同一样品多次处理的重复性。即同一样品取3—5份做平行处理,看最后测定结果的重复性。这一RSD值应不大于5%。当然,有些工业分析要求不大于10%即可。至于天与天之间的重现性也不应大于10%、
当上述重复性满足要求后,说明该方法在你的实验室是可靠的。要将此方法作为标准方法推广使用,还必须测定不同仪器、不同实验室之间的重现性。当这些重现性(RSD)都能满足要求时。这一方法的可靠性就得到了较为满意的验证。
方法的线性关系及检测限
准确称取 7种目标物的标准品, 用甲醇稀释配制成 7种目标物的标准溶液, 根据需要用甲醇分别稀释配制成 5级标准工作溶液, 浓度范围如表 3所示,在选定的色谱条件下,分别进样分析。以峰面积为纵坐标,浓度为横坐标作回归方程,结果见表 3 , 回归方程的相关系数 R2均大于 0.9999,线性关系良好。以最低浓度标样重复进样 5次, 取其 3倍标准偏差为检测限, 10倍标准偏差为定量限, 根据样品处理过程将结果换算为ug /g , 得到该方法的检测限和定量限
方法的回收率和重复性
采用标准加入法测定方法的回收率。取一种已知目标物含量的样品( 7 # ) ,加入与其含量相当的混合标
准溶液,重复 5次,测定其加标回收率和重复性, 结果如表 5所示。5次重复实验的 RSD范围为 1 。 3 % ~3 。 1 %, 回收率范围为 97 。 0 % ~ 99 。 6 %, 可以满足定量需要。
——引自《RP-HPLC法测定烟用香精香料中的7种防腐剂》
内标法方法学注意事项(引自网页论坛)
选一与欲测组分相近但能完全分离的组分做内标物(当然是样品中没有的组分),然后配制欲测组分和内标物的混合标准溶液,进样得相对校正因子。再将内标物加入欲测组分的样品中,进样后测得欲测组分和内标物的定量参数。用内标法公式计算即可。
内标法是将一定量的纯物质作内标物,加入到准确称量的试样中,根据被测试样和内标物的质量比及其相应的色谱峰面积之比,来计算被测组分的含量。 选择内标物有4个要求:1.内标物应是该试样中不存在的纯物质;2.它必须完全溶于试样中,并与试样中各组分的色谱峰能完全分离;3.加入内标物的量应接近于被测组分;4.色谱峰的位置应与被测组分的色谱峰的位置相近,或在几个被测组分色谱峰中间。 内标法的优点是测定的结果较为准确,由于通过测量内标物及被测组分的峰面积的相对值来进行计算的,因而在一定程度上消除了操作条件等的变化所引起的误差。内标法的缺点是操作程序较为麻烦,每次分析时内标物和试样都要准确称量,有时寻找合适的内标物也有困难。 外标法简便,但进样量要求十分准确,要严格控制在与标准物相同的操作条件下进行,否则造成分析误差,得不到准确的测量结果。
那么内标法的方法学研究就是将过测量内标物及被测组分的峰面积的相对值,也就是一个比值,来进行一些精密度、准确度、线性之类的研究。
具体就是配制不同浓度的标准溶液,记录样品和内标峰面积,计算样品/内标峰面积比值R样品/内标,利用样品浓度C对比值R样品/内标作直线回归,得回归方程,作为标准曲线。精密度、准确度也如此。
首先你要了解何为内标法
内标法是一种间接或相对的校准方法。在分析测定样品中某组分含量时,加入一种内标物质以校谁和消除出于操作条件的波动而对分析结果产生的影响,以提高分析结果的准确度。影响内标和被测组分峰高或峰面积比值的因素主要有化学方面的、色谱方面的和仪器方面的三类。
由化学方面的原因产生的面积比的变化常常在分析重复样品时出现。 化学方面的因素包括:
1、内标物在样品里混合不好;
2、内标物和样品组分之间发生反应,
3、内标物纯度可变等。
对于一个比较成熟的方法来说,色谱方面的问题发生的可能性更大一些,色谱上常见的一些问题(如渗漏)对绝对面积的影响比较大,对面积比的影响则要小一些,但如果绝对面积的变化已大到足以使面积比发生显著变化的程度,那么一定有某个重要的色谱问题存在,比如进样量改变太大,样品组分浓度和内标浓度之间有很大的差别,检测器非线性等。进样量应足够小并保持不变,这样才不致于造成检测器和积分装置饱和。如果认为方法比较可靠,而色谱固看来也是正常的话,应着重检查积分装置和设置、斜率和峰宽定位。对积分装置发生怀疑的最有力的证据是:面积比可变,而峰高比保持相对恒定, 在用内标法做色谱定量分析时,先配制一定重量比的被测组分和内标样品的混合物做色谱分析,测量峰面积,做重量比和面积比的关系曲线,此曲线即为标准曲线。在实际样品分析时所采用的色谱条件应尽可能与制作标准曲线时所用的条件一致,因此,在制作标准曲线时,不仅要注明色谱条件(如固定相、柱温、载气流速等),还应注明进样体积和内标物浓度。在制作内标标准曲线时,各点并不完全落在直线上,此时应求出面积比和重量比的比值与其平均位的标准偏差,在使用过程中应定期进行单点校正,若所得值与平均值的偏差小于2,曲线仍可使用,若大于2,则应重作曲线,如果曲线在铰短时期内即产生变动,则不宜使用内标法定量。
所以,当你确定应用内标法之后,就不需要进行这些实验的。因为你在加内标时它就是一个已知浓度了。做方法学的时候,内标和待测物标准品(比如你的白三烯待测物)要分别单独进样,然后再做标液的色谱图(含有内标和样品),然后再是提取或者回收后的样品(如血浆或者一些细胞,组织提取物等等),最后比较两者的封面积。
如果内标选择用来做方法回收率的,在样品前处理前进行添加。如果你在做标准曲线时候则上机前添加,添加量不管外标是否为梯度内标量是固定的。你看到有人做实际样品时候只是在上机前添加内标,他这时候的内标不能指示回收率,只能用于校正仪器信号偏差,通俗的说这种内标叫上机内标。而前处理时候加入的内标叫替代内标。(我这是个人称呼,不是官方称呼哈)。添加内标的量,一般要是样品含量的两倍,这个,其实很难把握吧,样品含量我们也不知道,所以就大胆的去加就行了。嘿嘿,纯个人观点哈!
你也可以在搜索更多本站小编为你整理的其他方法学验证【多篇】范文。
文档为doc格式